Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks
نویسندگان
چکیده
The microvascular network is a simple but critical system that is responsible for a range of important biological mechanisms in the bodies of all animals. The ability to generate a functional microvessel not only makes it possible to engineer vital tissue of considerable size but also serves as a platform for biomedical studies. However, most of the current methods for generating microvessel networks in vitro use rectangular channels which cannot represent real vessels in vivo and have dead zones at their corners, hence hindering the circulation of culture medium. We propose a scaffold-wrapping method which enables fabrication of a customized microvascular network in vitro in a more biomimetic way. By integrating microelectromechanical techniques with thermal reflow, we designed and fabricated a microscale hemi-cylindrical photoresist template. A replica mold of polydimethylsiloxane, produced by casting, was then used to generate cylindrical scaffolds with biodegradable poly(lactide-co-glycolide) (PLGA). Human umbilical vein endothelial cells were seeded on both sides of the PLGA scaffold and cultured using a traditional approach. The expression of endothelial cell marker CD31 and intercellular junction vascular endothelial cadherin on the cultured cell demonstrated the potential of generating a microvascular network with a degradable cylindrical scaffold. Our method allows cells to be cultured on a scaffold using a conventional culture approach and monitors cell conditions continuously. We hope our cell-covered scaffold can serve as a framework for building large tissues or can be used as the core of a vascular chip for in vitro circulation studies.
منابع مشابه
Encapsulation of Naja –Naja Oxiana Snake venom into Poly (lactide-co-glycolide) microspheres
One small-scale double emulsion technique for incorporation of Naja- Naja oxiana venom into Poly (lactide-co-glycolide) (PLGA) microspheres were developed and optimized. The effects of high speed homogenization on the double emulsion stability, microsphere size, entrapment efficiency and In vitro release of venom were studied. A stable double emulsion was verified by homogenization method. Slow...
متن کاملEffect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model
Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes. HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajo...
متن کاملInfluence of Additives on Fabrication and Release from Protein Loaded Microparticles
The purpose of this study was to investigate the effect of additives, poly(ethylene glycol) (PEG) 1450, poloxamer 407, polyvinyl alcohol (PVA) and sodium chloride in order to improve physico-chemical characteristics, encapsulation efficiency and in vitro release of bovine serum albumin, form poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles prepared by the w/o/w solvent evaporation...
متن کاملPreparation and Characterization of Estradiol Valerate Microspheres Using Biodegradable Polymers
In this study, microspheres containing estradiol valerate were prepared by solvent evaporation method using poly (glycolide-co-lactide) (PLGA 50:50) and poly (lactide). The effect of different process variables such as polymer type, drugpolymer ratio, stirring rate, volume of internal phase and temperature of external phase on the morphology, particle size distribution, encapsulation effic...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017